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Abstract

In today’s rapidly evolving field of artificial intelligence (AI), there exist models1

capable of receiving prompts and generating music as output. However, a persistent2

challenge arises when these models are tasked with generating high-quality music3

based on prompts that include specific musical conditions. To address this issue,4

we propose the use of Reinforcement Learning from Human Feedback (RLHF).5

We employed DDPO to fine-tune AudioLDM 2, utilizing rewards to train the policy6

network. With two distinct reward models, we obtained two sets of results. When7

CLAP was employed as the reward model, all similarities showed improvement.8

On the other hand, when EMOPIA was used as the reward model, improvement9

was observed only in the case of 10-second music. Additionally, we discovered10

that longer music durations, despite lower quality, proved to be more beneficial for11

training. Another notable finding was that overly complicated prompts negatively12

impacted the training process.13

1 Introduction14

Numerous AI models, such as text-to-audio and text-to-music converters, have emerged, capable of15

generating audio and music based on provided text. An example is MusicGen, a model developed16

by Meta that utilizes twenty-thousand hours of licensed music as training data and is built upon a17

Transformer-based Language Model. Despite the existence of various text-to-music models, several18

challenges persist.19

20

One notable issue arises when the content of the prompt includes specific music conditions;21

in such cases, text-to-music models often struggle to produce music that satisfies all given conditions.22

Additionally, challenges related to low generation quality and high computational costs remain to be23

addressed in this domain. While these models represent significant advancements, it is clear that24

there is ongoing work required to overcome these challenges and further enhance their capabilities.25

26

AudioLDM2 is one of the models that has attempted to address this problem. AudioLDM227

utilizes a Latent Diffusion Model, which serves to reduce computational costs and enhance music28

quality. It can be trained on a computer with only one CPU (Central Processing Unit) or GPU29

(Graphics Processing Unit). During the training phase, AudioLDM2 takes two inputs: a prompt and30

audio. The prompt undergoes processing through GPT-2 to generate the Language of Audio (LOA)31

associated with the prompt. Simultaneously, the audio is processed through the AudioMAE-encoder32

to generate the LOA for the audio. These LOAs are then fed into the diffusion model. A probabilistic33

switcher controls the probability of the latent diffusion model using both the ground truth AudioMAE34

and the GPT-2 generated AudioMAE feature as conditions.35

36

The second important component is CLAP (Contrastive Language-Audio Pretraining), which can37

evaluate the similarity between the prompt and the music. We will treat this similarity as a reward,38

making CLAP our chosen reward model. CLAP takes a text-music pair as input and then jointly39
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trains the audio and text encoders to learn similarity through contrastive learning.40

41

The final component we require is DDPO (Denoising Diffusion Policy Optimization), which is also a42

Diffusion Model but incorporates reinforcement learning techniques to enhance performance. DDPO43

is based on the Stable Diffusion Model, and we employ it to train the policy network. This policy44

network provides us with a gradient to fine-tune AudioLDM2.45

46

Our architecture is designed as follows: first, input the prompt into AudioLDM2 to gener-47

ate music; second, utilize CLAP to evaluate the similarity between the prompt and the generated48

music; lastly, employ DDPO to train the policy network using the reward (similarity) and provide49

feedback to AudioLDM2.50

2 Related Work51

2.1 Reinforcement learning52

Reinforcement Learning from Human Feedback (RLHF). Large Language Models (LLMs)53

have made significant strides in recent years in generating diverse text based on human prompts.54

However, measuring "good" text remains a challenge as it involves subjective judgment and55

context-dependency. Traditional training methods such as next-word prediction (e.g., cross-entropy)56

have their limitations, and standard metrics like BLEU or ROUGE offer only simple document57

comparison. This is where Reinforcement Learning from Human Feedback (RLHF)[1] comes into58

importance. It optimizes models by directly utilizing human feedback, converting human judgment59

into reward learning. It enables the application of reinforcement learning to complex tasks that are60

based on human judgment, allowing LLMs to adapt to a wide range of text data and align with61

complex human values, opening up new possibilities for the development of language models.62

63

Scaling Reinforcement Learning from Human Feedback with AI Feedback (RLAIF).64

Reinforcement Learning from Human Feedback (RLHF)[1] is an effective technique for aligning65

language models to human preferences. However, gathering high-quality human preference labels66

can be a time-consuming and expensive endeavor. RLAIF[2] uses large language models to generate67

preference labels, reducing the need for human annotators. Tested across various tasks, RLAIF68

demonstrated the ability to match and even excel the performance of RLHF, showing its potential to69

achieve human-level performance.70

71

Denoising Diffusion Policy Optimization (DDPO). Applying Reinforcement Learning72

(RL) to directly train diffusion models for downstream objectives, such as human-perceived73

image quality or drug effectiveness, involves interpreting denoising diffusion as a multi-step74

decision-making process. This interpretation enables the use of a class of policy gradient algorithms75

called denoising diffusion policy optimization (DDPO)[3]. DDPO is used to refine Stable Diffusion76

on objectives hard to express via prompting, such as image compressibility, and those derived from77

human feedback, like aesthetic quality. DDPO also shows the ability to enhance the alignment78

between prompts and images without human annotations, using feedback from a vision-language79

model.80

2.2 Music audio generation81

AudioLDM2. The most important feature introduce in AudioLDM2 is LOA(Language of Audio). It82

replace embedding in AudioLDM become the intermediate feature. LOA can represent the semantic83

information of an audio clip no matter it is fine-grained acoustic information or coarse-grained84

semantic information. It also chnage audio-encoder to AudioMAE(Audio Masked Autoencoder)85

and change text-encoder to GPT-2(Generative Pre-trained Transformer 2). Using GPT-2 allow86

AudioLDM2 to input flexible conditions, such as the representation of text, audio, image, video, and87

so on. It use a switcher to choose audio LOA or condition LOA as input for Diffusion Model. The88

other parts are similar to AudioLDM, it also use VAE(Variational Autoencoder) to decode sample.89

90
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Figure 1: Architecture graph of AudioLDM2

2.3 Audio Feature Extraction91

Contrastive Language-Audio Pretrainging (CLAP). CLAP[4] represents a significant advancement92

in audio classification using contrastive learning. The model is pretrained on three datasets. Initially,93

LAION-Audio-630K, a substantial dataset, includes 633,526 audio-text pairs gathered from diverse94

data sources. Secondly, AudioCaps+Clotho (AC+CL) comprises approximately 55,000 training95

samples of audio-text pairs. Lastly, Audioset consists of 1.9 million audio samples with only labels96

available for each sample. The dataset comprises a total of about 4 million samples, spanning97

approximately 30,000 hours, including various genres of music and audio, all accompanied by98

captions. The proposed pipeline in CLAP incorporates different audio and text encoders, thereby99

facilitating the development of an audio representation. This design effectively combines audio data100

with corresponding natural language descriptions, enriching the potential applications in the field.101

EMOPIA. EMOPIA dataset[4] is a shared multi-modal (audio and MIDI) database concentrating on102

the perceived emotion in pop piano music. This dataset was designed to facilitate research on various103

tasks related to music emotion. The EMOPIA dataset contains 1,087 music clips from 387 songs104

and clip-level emotion labels annotated by four dedicated annotators. It also provides a short-chunk105

Resnet model to classify music into four categories.106

3 Problem Formulation107

In this paper, our objective is to investigate a novel approach for enhancing text-music alignment,108

specifically focusing on fine-tuning AudioLDM2. AudioLDM2 faces challenges in interpreting109

conditions within prompts, and our focus will be on addressing the issues outlined below:110

• Improve AudioLDM2’s capability to understand the meaning of prompts.111

• Enhance AudioLDM2’s capability to recognize the emotion in prompts.112

The following methodology and experiments are designed to address the above two problems with113

proposed model architecture and different reward models.114
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Figure 2: Architecture graph of CLAP

Figure 3: EMOPIA

4 Method115

4.1 Model conditioning116

We know that the content of prompts significantly influences the outcomes of the diffusion model. To117

optimize the input prompt format, we experiment with various formats. Our exploration lead us to a118

successful format as follows:119

A recording of an (emotion) (instrument) solo, high quality120

In this format, "emotion" can be replaced by one of four emotions: happy, angry, sad, or tender.121

Similarly, "instrument" can be replaced with a variety of instrument names, such as piano, violin, or122
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flute. Furthermore, we discover that negative prompts notably affect the performance of the diffusion123

model. Consequently, we test different negative prompt patterns and identify the most effective124

format:125

Low quality, multiple sound sources126

The term "low quality" helps steer the diffusion model away from generating low-quality music. As127

we aim to generate solo instrumentals, the phrase "multiple sound sources" is used to prevent the128

model from producing music with accompanying instruments or background noise. Notably, we129

observe a significant performance enhancement in the model after the inclusion of "multiple sound130

sources".131

4.2 Denoising as a Multi-Step MDP132

We map the iterative denoising procedure to the following Markov Decision Process (MDP):133

st ≜ (c, t, xt),

π(at | st) ≜ pθ(xt−1 | xt, c),

P (st+1 | st, at) ≜ (δc, δt−1, δxt−1),

at ≜ xt−1,

ρ0(s0) ≜ (p(c), δT ,N (0, I)),

R(st, at) ≜

{
r(x0, c) if t = 0,

0 otherwise,

where xt is the noisy latent variable, t is the time step, c is the corresponding context, πt is the policy134

given the state and action, P is the transition kernel, ρ0(s0) is the distribution of initial states, and δy135

is the Dirac delta distribution with nonzero density only at y. Trajectories consist of T time steps,136

after which P leads to a termination state. The cumulative reward of each trajectory is equal to137

r(x0, c). To perform multiple steps with an offline policy, we use an importance sampling estimator.138

Maximizing the following function is our objective in this MDP:139

∇θJDDRL = E

[
T∑

t=0

pθ(xt−1 | xt, c)

pθold(xt−1 | xt, c)
∇θ log pθ(xt−1 | xt, c)r(x0, c)

]
.

The first term represents the difference between the old policy and the updated one; we clip the140

difference to 1× 10−4 to avoid drastic changes in the model during offline training.141

4.3 Our training pipeline142

RLHF[1] can adapt text-to-audio diffusion models to objectives that are challenging to express via143

prompting, such as audio quality derived from human feedback. However, RLHF requires large-scale144

human labeling efforts. Motivated by recent work on RLAIF[2], we propose using an existing audio145

classification model, such as CLAP[4] and EMOPIA[4] to replace additional human annotation.146

In Figure 4, we present the architecture of our design aimed at enhancing prompt-audio alignment.147

This improvement leverages feedback from audio classification models (CLAP & EMOPIA) and148

utilizes a policy gradient algorithm (DDPO) to update the gradient of the text-to-audio diffusion149

model (AudioLDM2).150

The architecture operates in three distinct steps. Initially, in the first step, we feed the conditional151

prompt and negative prompt into AudioLDM2 to generate a short segment of music. In the subsequent152

step, both CLAP and EMOPIA are utilized as individual reward models. When CLAP is employed as153

the reward model, it extracts embeddings of input text prompt and music, by calculating the cosine154

similarity of the two embeddings as the reward score. On the other hand, EMOPIA categorizes the155

music’s emotion into four categories, using output logits as the reward score.156

In the final step, we gather the output reward scores from the reward models and the log probability157

between each denoising process, which is considered a multi-step decision-making process, as a158
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Figure 4: Architecture

trajectory. Subsequently, we train the policy network with each trajectory. The policy network159

produces gradients used to update the gradient of cross attention layers in AudioLDM2. Additionally,160

we freeze the majority of the weights in AudioLDM2 while updating the gradient and employ161

LoRA[5] to fine-tune it. This strategy is designed to reduce the GPU memory requirement, a crucial162

consideration given we are operating with a single GPU, NVIDIA RTX 3090 resource.163

5 Experiment result164

In this section, we perform multiple experiments using CLAP and EMOPIA as individual reward165

models. Our goal is to evaluate the effectiveness of reinforcement learning (RL) algorithms in166

fine-tuning text-to-audio diffusion models. This fine-tuning aims to enhance the alignment between167

the input text and the output audio.168

5.1 Reward function design169

Initially, for both CLAP and EMOPIA reward models, we devise two distinct reward functions:170

label reward and value reward. The label reward is binary, assigning a value of 0 or 1 based on the171

correctness of the output prediction. A correct prediction yields a reward of 1, while an incorrect172

prediction results in a reward of 0. The value reward, on the other hand, ranging from -1 to 0, involves173

calculating the difference between the probability logit of predicted class and the probability logit of174

ground truth class as the reward value.175

However, after conducting several experiments with these two different reward functions, we found176

that only the value reward function performed optimally. The experimental results revealed that a177

dense reward, which is logits score, proved to be much more effective than a sparse reward, which is178

label-oriented score.179

5.2 CLAP model experiments180

5.2.1 Random seed design181

We discovered that the choice of seed setting significantly affects the performance of DDPO training.182

Figures 5a and 5b demonstrate that using a random seed results in failed reward training. However,183

when we used a specific seed (777) under the same experimental conditions, the results (as shown in184

Figure 5c.) were quite different, with successful training and an average clap similarity of 0.46776447.185

In an attempt to broaden our testing parameters, we extended the audio duration to 10 seconds and186

decreased the step sizes to 19. In this scenario, with a random seed setting, the reward curve187

demonstrated successful training, as displayed in Figure 5d. From our experimental findings, we188

deduced that a duration of 5 seconds might contribute to less robust training, with only certain seeds189

yielding success. Conversely, a longer duration seems to enhance training robustness, even with a190

random seed setting, leading to successful outcomes.191
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Figure 5: Different seed settings: (a) random seed with 38 sample steps, a batch size of 1, and
generates output audio lasting 5 seconds. (b) random seed with 38 sample steps, a batch size of 1,
and generates output audio lasting 5 seconds. (c) seed 777 with 38 sample steps, a batch size of 1,
and generates output audio lasting 5 seconds. (d) random seed with 19 sample steps, a batch size of 1,
and generates output audio lasting 10 seconds.

Figure 6: Different instruments prompt settings: (a) single piano prompt with 38 sample steps, a
batch size of 1, and a duration of 5 seconds. (b) instruments prompt set with piano and violin, and the
configuration is 38 sample steps, a batch size of 1, and a duration of 5 seconds.

5.2.2 Variety of instruments192

After multiple experiments, we discovered that using a variety of instruments in prompts resulted193

in unsuccessful training. Consequently, we scaled down from ten different options to just one,194

specifically choosing the piano. As depicted in Figure 6a., the use of a single instrument prompt195

led to successful training, achieving an average clap similarity of 0.4999865. However, when we196

introduced another instrument to the prompt set, namely the violin, the outcome, as indicated in197

Figure 6b., resulted in failed training. We speculate that variations in emotional expression between198

each instrument could potentially confuse the model, ultimately leading to unsuccessful training.199

5.2.3 Transfer between reward models200

To verify the generalization of the reward models, our initial attempt involved training with CLAP201

as the reward model. Employing settings of 19 sample steps, a batch size of 1, and a duration of202

10 seconds, the outcome yielded an average clap similarity of 0.46776447. However, subsequent203
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Figure 7: Emotional information in diffusion steps experiments: (a) Train only for the final 20
denoising steps. (b) Train only for the initial 20 denoising steps.

evaluation using EMOPIA showed an accuracy of only 0.27. Remarkably, this accuracy closely204

mirrored the score obtained before applying DDPO for fine-tuning, which was 0.26. Furthermore, we205

conducted training with EMOPIA as the reward model and assessed it using CLAP for evaluation.206

The outcome remained consistent with the previous attempt, indicating the inability of this algorithm207

to generalize to other metrics.208

5.2.4 Emotional information in diffusion steps209

Intrigued by the question of where emotional information might exist within the denoising steps, we210

divided the denoising process into two segments. We conducted training for the final 20 steps and211

the initial 20 steps separately. Both experiments maintained the same settings as those in Figure 6a.212

experiment, with 38 sample steps, a batch size of 1, and a duration of 5 seconds. These conditions had213

previously yielded successful training. However, as depicted in Figures 7a. and 7b., the outcomes of214

both experiments were unsuccessful. From these results, we infer that emotional information cannot215

be trained solely on specific steps; instead, it necessitates training across all steps.216

5.3 EMOPIA model experiments217

5.3.1 Training218

Initially, we start with the experiment setting as described in Figure 9a, which includes 16 emotions219

and a single instrument (piano) in the input prompt. The experiment uses 16 sample steps, a batch220

size of 16, and generates output audio lasting five seconds. However, the results indicate that the221

training reward curve did not show improvements with this setup.222

Given the complexity of handling multiple emotions, we modified the input prompt to include only223

the four basic emotions: happy, angry, sad, and tender, as shown in Figure 9b. Even with this224

simplification, the results remained unchanged.225

Subsequently, we hypothesized that an increase in step sizes might enhance the quality of the audio226

output from AudioLDM2. Therefore, we adjusted the experimental setting described in Figure 9c.227

Due to GPU memory limitations, the step sizes were set at 38, and the batch size was decreased to228

one. We again used a broader range of emotions, back to 16 in total. However, this adjustment did229

not lead to an improvement in the results.230

Finally, we modified the setup to extend the audio duration to ten seconds, as depicted in Figure 9d.231

With GPU memory limitations in mind, we reduced the step sizes to 19 with a batch size of one. The232

results, after 3,000 training steps, revealed an improved reward of -0.1. This setting demonstrated our233

model’s ability to enhance alignment between input text and output audio.234

Our analysis across these four experiments concludes that a 5-second duration may lead to failed235

training. This could be due to the EMOPIA model, which takes 3-second chunks for classification. A236

5-second output only provides one chunk, potentially leading to a lack of robustness.237

5.3.2 Accuracy on Four Emotions238

For a deeper understanding of EMOPIA’s performance, we conducted an analysis on its emotion-239

specific performance. As indicated in Table 1, we observed that prior to fine-tuning AudioLDM2 with240
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Figure 8: We conducted experiments with various settings involving prompts and the configuration
of AudioLDM2: (a) Input prompt includes 16 emotions with a single instrument (piano). The
experiment uses 16 sample steps, a batch size of 16, and generates output audio lasting 5 seconds. (b)
Input prompt includes 4 emotions with a single instrument (piano). The experiment uses 9 sample
steps, a batch size of 16, and generates output audio lasting 5 seconds. (c) Input prompt includes 16
emotions with a single instrument (piano). The experiment uses 38 sample steps, a batch size of 1,
and generates output audio lasting 5 seconds. (d) Input prompt includes 4 emotions with a single
instrument (piano). The experiment uses 19 sample steps, a batch size of 1, and generates output
audio lasting 10 seconds.

Table 1: Accuracy on four emotions

Original Trained

Setting 19-step, 10 sec. 38-step, 5 sec. 200-step, 5 sec. 19-step, 10 sec.

Happy 1.0 0.92 0.76 0.6
Angry 0.04 0.0 0.08 0.6
Sad 0.0 0.16 0.08 0.24
Tender 0.0 0.08 0.0 0.0

DDPO, the EMOPIA model tended to classify all audio generated from different emotion prompts as241

"Happy", irrespective of the settings used. This resulted in the "Happy" emotion prompt exhibiting the242

highest accuracy, while the other three emotions displayed disastrously low accuracy. However, upon243

the application of DDPO for the fine-tuning of AudioLDM2, we noticed significant improvements244

in the classification of the "Angry" emotion, with the accuracy increasing from nearly 0.0 to 0.6.245

We also recorded a slight improvement for the "Sad" emotion, with its accuracy increasing to 0.24.246

Despite this, the accuracy of the "Happy" emotion decreased to 0.6, while the "Tender" emotion’s247

accuracy remained stagnant at 0.0. The results provide compelling evidence that our method, which248

involves using DDPO to fine-tune AudioLDM2, is effective in enhancing the alignment between249

different emotion prompts and their corresponding audio.250

5.4 Results251

In summary, our method has demonstrated notable improvements in enhancing prompt-audio align-252

ment. As illustrated in Table 2, when we utilized CLAP as the reward model in a setting with253

19 sample steps, a batch size of 1, and a duration of 10 seconds, we observed a slight increase in254

similarity, from 0.43 to 0.46, before and after training. A more noticeable improvement occurred in255
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Table 2: Experiment result summary

CLAP(similarity) EMOPIA(accuracy)

Model Original Trained Original Trained

19-step, 10 sec. 0.43 0.46 0.26 0.36
38-step, 5 sec. 0.33 0.45 0.29 X
200-step, 5 sec. 0.31 - 0.23 -

the setting with 38 sample steps, a batch size of 1, and a duration of 5 seconds, showing an increase256

from 0.33 to 0.45, nearly matching the performance of the longer duration setting.257

The same level of improvement was noticed when we used EMOPIA as the reward model. In a258

configuration of 19 sample steps, a batch size of 1, and a duration of 10 seconds, the accuracy rose259

by 10 percent, from 0.26 to 0.36. However, due to EMOPIA’s lesser robustness, we were unable to260

train the model in a 5-second duration setting. Additionally, given the GPU memory limitations, we261

were unable to train the model using 200 sample steps. Nevertheless, we observed that increasing the262

number of sample steps did not enhance the performance in both the CLAP and EMOPIA results.263

6 Conclusions264

We demonstrate the feasibility of employing reinforcement learning (RL) to train text-music265

alignment. We present a method using DDPO to fine-tune AudioLDM2, and our experiments suggest266

that this pipeline can improve AudioLDM’s ability to recognize emotions and meaning in prompts.267

However, certain defects require further investigation. As observed, five seconds of music can only268

be trained on a specific seed, while ten seconds of music can be trained on a random seed. We suspect269

this discrepancy may be due to EMOPIA, which usually categorizes music as happy and occasionally270

provides rewards that are meaningless for training. Another potential reason is that EMOPIA uses271

three seconds as a chunk, so five seconds of music only has one chunk, whereas ten seconds of music272

has three chunks, making it easier for training.273

274

Additionally, overly complicated prompts may result in training failures. In our experi-275

ments, we restricted the use to four emotions and piano, resulting in satisfactory outcomes. However,276

introducing more complex emotions and instruments led to failures. Another observation is that277

the model does not transfer seamlessly. Specifically, if we train AudioLDM2 with CLAP and then278

evaluate it with EMOPIA, the results are the same as if it had not undergone training, and vice versa.279
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