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ABSTRACT

In this project, our goal is to finetune the text-to-audio
model AudioLDM?2 to generate personalized timbre while
retaining the concepts it learned before. We mainly use the
Dreambooth method, utilizing prior preservation loss for
the concept we wish to retain. We also use the AudioMAE
as an audio encoder to facilitate the personalization pro-
cess. To learn personalized timbre, we chose Chinese in-
struments as our targets since current text-to-audio models
are not familiar with them.

1. INTRODUCTION

There has been impressive progress in personalization re-
search in the computer vision domain, generating images
with personalized concepts such as a specific dog, a per-
son’s face, etc. The advantage of the personalization
method is that it only requires a small amount of data and
can learn something hard to describe via text. While there
have been several works focusing on controlling chords,
melody, dynamics, and rhythm of generated music, our
work specializes our model to generate specific timbre.
Our contributions include:

* 1. We use teacher forcing to fine-tune GPT2 with
the ground truth LOA from AudioMAE before using
Dreambooth, significantly accelerating the personal-
ization process.

* 2. We use an extension of Dreambooth to prevent
the model from ignoring other prompts and focusing
solely on the fine-tuned instrument.

2. RELATED WORK
2.1 AudioLDM2

AudioLDM2 is a text-to-audio diffusion model inspired by
stable diffusion, with a few differences. While stable diffu-
sion leverages the shared embedding space of image text,
AudioLDM?2 uses the latent space of the AudioMAE en-
coder. This latent space is called the Language of Audio
(LOA). Training AudioLDM?2 requires both ground truth
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Figure 2. AudioMAE structure

LOA and predicted LOA when audio is not available. The
predicted LOA is generated by a text encoder and a lan-
guage model, GPT2. The language model is fine-tuned
using teacher forcing with the ground truth LOA gener-
ated by the AudioMAE. After fine-tuning GPT2, joint fine-
tuning with Unet is performed, with a probability of 0.25
using ground truth LOA and 0.75 using the predicted LOA.

2.2 AudioMAE

AudioMAE (Audio Masked Encoder) is similar to the
image-based Masked Autoencoders, both used for self-
supervised representation learning. AudioMAE takes au-
dio spectrograms, while MAE takes images. AudioMAE
first encodes audio spectrogram patches with a high mask-
ing ratio, feeding only the non-masked tokens through en-
coder layers. The decoder then re-orders and decodes the
encoded context padded with mask tokens to reconstruct
the input spectrogram. The intermediate representation be-
tween the encoder and decoder is very disentangled, as
disclosed in the AudioLDM2 paper, involving fine-grained
timbre information of the audio, making it suitable for our
work as a condition embedding.



2.3 Dreambooth

Large text-to-image models can synthesize high-quality
images from a given text prompt, but these models fall
back on mimicking the appearance of subjects in a given
reference set and generating the same subject in another
background. Dreambooth takes a few images as input and
uses a unique, rarely-seen string as an identifier for the sub-
ject in the picture. During fine-tuning, the model learns
that the identifier refers to the specific subject. However,
to avoid the model mistakenly learning that all subjects re-
fer to the specific subject, we use prior preservation loss to
ensure the model still knows the generalized subject. For
example, to learn a specific dog’s appearance, we use the
prompt "a photo of a sks dog" to teach the model that "sks"
refers to the target concept, while prior preservation cal-
culates the loss between the output of "a photo of a dog"
before and after fine-tuning to ensure the model doesn’t
generalize "sks dog" to mean all kinds of dogs. In the au-
dio domain, we use a method similar to Dreambooth, with
slight differences explained in Section 3.

3. METHODS
3.1 Variation of Dreambooth

We use "sks flute" to represent the Chinese flute during the
fine-tuning process. We discovered that after fine-tuning
the model with "a recording of a sks flute," the model could
not generate "a recording of a sks flute played with pi-
ano" while still generating "a recording of a piano." This
means the fine-tuning process misleads the model to per-
form only the fine-tuned instrument "sks flute" and ignore
other instruments. Our solution is to use another prompt "a
recording of a sks flute with piano," where the correspond-
ing audio is made by directly mixing the training concept
audios of the sks flute with piano audios generated by the
original model. This may slightly affect the compatibility
of the two instruments in the same generated audio, but it
prevents the model from ignoring the second instrument in
the prompt. We use the following prompts for personaliza-
tion:

class prompt: "A recording of a sks flute solo."

validation prompt: "A recording of a piano with sks flute."

3.2 AudioMAE Teacher Forcing

Since AudioLDM?2 is trained to be conditioned with LOA,
we simply connect the AudioMAE back with the same
pretrain weight. In the pre-trained AudioLDM?2 pipeline,
GPT?2 outputs predicted LOA with a shape of (1,8,768),
a small latent space that can be fine-tuned quickly. We
use teacher forcing to optimize the MSE loss between the
ground truth LOA and the predicted LOA output by GPT2
in the AudioLDM2 pipeline. After only 50 epochs, which
takes about 1 minute, GPT?2 starts from a better initial state
for personalization. There are a few drawbacks, such as
when the pre-trained AudioMAE hasn’t seen the timbre of
the target concept audio before, it outputs an embedding
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Figure 3. Lora adaptor structure

not the same as the target but close to the target. We will
show quantitative results in Section 5.

3.3 Lora Fine-Tuning

Lora is often used to fine-tune large language models since
it significantly reduces the memory usage of the GPU.
LoRA proposes to freeze pre-trained model weights and
inject trainable layers (rank-decomposition matrices) in
each transformer block, reducing the number of trainable
parameters. In the paper "Encoder-based Domain Tuning
for Fast Personalization of Text-to-Image Models," they
measure the importance score of the Unet in the diffusion
model and discover that the cross-attention layers undergo
drastic changes compared to other layers. Based on their
findings, we decided to use Lora adaptors connected to the
cross-attention layers and freeze all other parts to fine-tune
the model while restricting the fine-tuning process to pre-
vent forgetting or ignoring concepts afterward.

4. EVALUATION

We evaluate the personalized timbre with two different
metrics. The first one is Frechet Distance (FAD), calcu-
lated between the embeddings of a pre-trained VGGish au-
dio classifier of the training set and the generated music
clips. The second evaluation metric is the confidence score
of the classifier we trained.

4.1 Classifier

To assess the performance of the music generator, we ad-
dress two crucial questions:

1. How closely does the generated music emulate the
desired instruments?

2. How effectively does the generated music avoid re-
sembling other undesired instruments?

We employ a classification model to meet these specific
requirements.

4.1.1 Dataset

For the Chinese music component, we acquire full-song
audio from Chinese music albums, encompassing two dis-
tinct types of Chinese instruments: the Chinese flute and
the Chinese lute. Unfortunately, most songs in these al-
bums are not solo performances, meaning the dataset is
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Figure 4. Classifier Model Structure

not "clean" as it includes music that does not solely fea-
ture the desired instruments. To remedy this, we use Basic
Pitch[1], a lightweight audio-to-MIDI transformer. After
transforming songs into MIDI files, we determine whether
a song is solo or not by calculating the ratio of the count
of all pitches to the total duration of pitches. This ratio
reflects the proportion of time with multiple pitches in a
song. If the ratio is sufficiently low, we consider the song
solo, qualifying it as "clean" and suitable for inclusion in
our dataset. After purifying the dataset, the next steps in-
volve segmenting the songs and splitting the dataset at the
song level, creating distinct training, validation, and testing
sets.

In addition to the Chinese music dataset, we use the
NSynth Dataset to train the classification model for non-
Chinese music. This dataset provides audio samples for
10 different instruments, including bass, brass, flute, gui-
tar, keyboard, mallet, organ, reed, string, and vocal. The
dataset’s extensive volume and well-defined partitions help
overcome challenges such as overfitting, ensuring a high
level of accuracy.

4.1.2 Model Structure

In constructing the classifier model, we leverage a pre-
trained AudioMAE]|2] as a feature extractor. The extracted
features serve as the basis for classification. We connect
multiple fully connected layers, integrating dropout layers
and ReL U functions between them. These layers work to-
gether to calculate the score for each type of instrument the
audio may belong to. The model structure is illustrated in
Figure 4. While theoretically, adding more fully connected
layers may enhance classifier accuracy, post-training anal-
ysis reveals that the network with two fully connected lay-
ers following the AudioMAE encoder achieves the highest
accuracy. Consequently, we select this configuration as our
final model.

4.1.3 Additional Training Parameters

To evaluate the retention of prior instrument generation pa-
rameters by the generator, we task it with creating audios
featuring both a non-Chinese and a Chinese musical in-
strument. Consequently, the classifier constructed is de-
signed as a multi-class multi-label classifier. The chosen
loss function is Binary Cross Entropy, with a sigmoid func-
tion serving as the activation function before it.

Other training hyperparameters include a learning rate
set to 0.001, a batch size of 64, and 120 training epochs.
The parameters are shown in Table 1.

Training Parameter | Value

Classifier Type Multi-class Multi-label
Loss Function Binary Cross Entropy
Activation Function | Sigmoid

Learning Rate 0.001

Batch Size 64

Training Epochs 120

Table 1. Training Parameters for Audio Generation

4.1.4 Classification Results

Following 120 epochs of training, the model achieves a
testing accuracy of 0.7350, as illustrated in Figure 5 by
the accompanying confusion matrix. Several notewor-
thy points arise from these results. Firstly, it’s essential
to acknowledge that "synth" is an instrument exclusively
present in the training dataset of NSynth. Therefore, an
expected outcome is that the testing results for "synth" are
all zeros. Secondly, despite an overall accuracy of 0.7350,
the model exhibits exceptional proficiency in classifying
the Chinese flute, the primary focus of our analysis. Lastly,
the model appears to struggle in effectively classifying the
Chinese lute. Notably, close to half of the Chinese lute in-
stances are misclassified as Chinese flute. This discrepancy
may be attributed to the training set containing only about
two-thirds of the data available for the Chinese flute, lead-
ing to misclassification of Chinese lute instances as Chi-
nese flute.
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Figure 5. Confusion Matrix

5. RESULTS

We will show the results for different settings.

5.1 Teacher Forcing

Model 300 steps | 25 steps | 0 steps
large-gpt2 7.17 8.67 20.01
large-gpt2-teacher 6.8 8.09 13.64

Table 2. FAD results for version 2

We evaluate two sets of training audio. Version 1 has
higher tones, which sound a bit like the original flute, while



Model 25 steps | 0 steps
large-gpt2 23.04 | 45.84
large-gpt2-teacher | 5.55 3.56

Table 3. FAD results for version 1

version 2 includes lower tones with a special timbre. As
we can see, version | (Table 3) shows a significant change
after teacher forcing since the timbre is more generalized.
In contrast, version 2 (Table 2) shows a smaller difference
after teacher forcing as the AudioMAE is not familiar with
this version.

5.2 Prior Preservation for Accompaniment

The purpose of the prior preservation loss is to prevent the
model from ignoring an instrument other than the training
concept. We leverage the confidence output by the softmax
layer of the classifier to see if, when given the prompt "A
recording of a piano with sks flute," the piano will get a
higher confidence score after using prior preservation loss
for accompaniment. We sort the confidence scores and
record the ranking of the piano. Without using prior preser-
vation loss, we can barely hear the piano. When using prior
preservation loss, we can hear a clear piano accompani-
ment, thus the confidence score is only smaller than the
class Chinese flute.

Model Ranking
large-gpt2 7
large-gpt2-prior 2
large-gpt2-Lora 4

Table 4. Ranking of the piano class

The result shows that the prior preservation loss works,
while Lora doesn’t perform as well but is still better than
direct fine-tuning. Furthermore, we need to ensure that
although restricting the model by prior preservation, the
model can still learn the target concept well. See the com-
parison in Table 5. We can see that we didn’t sacrifice the
quality of the target concept while preserving the ability to
perform the duet.

Model FAD
large-gpt2 7.17
large-gpt2-prior | 7.39

Table 5. FAD results

5.3 Best Result

Our best result combines teacher forcing and the varia-
tion of prior preservation loss. The first one, "large-gpt2-
teacher-mixclass-prior," refers to first fine-tuning GPT2
and then training with the mixed audio of piano and the
Chinese flute. The second one retains the settings from the
first one, but the prior-preservation audio is simply gen-
erated by using the prompt "a recording of a piano with
flute." Since the first setting uses mixed audio, we are
concerned it might affect the synchronization of the duet,

while the second setting might not produce the exact same
timbre of the target concept when played with piano. De-
spite these concerns, the results show both settings perform
well.

Model FAD
large-gpt2-teacher-mixclass-prior 5.71
large-gpt2-teacher-chineseclass-prior | 7.26

Table 6. FAD results

Model Ranking
large-gpt2-teacher-mixclass-prior 2
large-gpt2-teacher-chineseclass-prior 2

Table 7. Ranking of the piano class

6. CONCLUSION

In this work, we successfully accelerated the personaliza-
tion process, prevented the model from ignoring the sec-
ond instrument after fine-tuning, and generated better re-
sults despite the restrictions mentioned above. In the fu-
ture, we will research other adapters for faster and more
precise fine-tuning.



